27 research outputs found

    Cosmic string loop distribution on all length scales and at any redshift

    Full text link
    We analytically derive the expected number density distribution of Nambu-Goto cosmic string loops at any redshift soon after the time of string formation to today. Our approach is based on the Polchinski-Rocha model of loop formation from long strings which we adjust to fit numerical simulations and complement by a phenomenological modelling of gravitational backreaction. Cosmological evolution drives the loop distribution towards scaling on all length scales in both the radiation and matter era. Memory of any reasonable initial loop distribution in the radiation era is shown to be erased well before Big Bang Nucleosynthesis. In the matter era, the loop distribution reaches full scaling, up to some residual loops from the radiation era which may be present for extremely low string tension. Finally, the number density of loops below the gravitational cutoff is shown to be scale independent, proportional to a negative power of the string tension and insensitive to the details of the backreaction modelling. As an application, we show that the energy density parameter of loops today cannot exceed 10^(-5) for currently allowed string tension values, while the loop number density cannot be less than 10^(-6) per Mpc^3. Our result should provide a more robust basis for studying the cosmological consequences of cosmic string loops.Comment: 24 pages, 4 figures, uses iopart. References added, matches published versio

    Quantum effects in gravitational wave signals from cuspy superstrings

    Get PDF
    We study the gravitational emission, in Superstring Theory, from fundamental strings exhibiting cusps. The classical computation of the gravitational radiation signal from cuspy strings features strong bursts in the special null directions associated to the cusps. We perform a quantum computation of the gravitational radiation signal from a cuspy string, as measured in a gravitational wave detector using matched filtering and located in the special null direction associated to the cusp. We study the quantum statistics (expectation value and variance) of the measured filtered signal and find that it is very sharply peaked around the classical prediction. Ultimately, this result follows from the fact that the detector is a low-pass filter which is blind to the violent high-frequency quantum fluctuations of both the string worldsheet, and the incoming gravitational field.Comment: 16 pages, no figur

    Cosmological evolution of cosmic string loops

    Full text link
    The existence of a scaling evolution for cosmic string loops in an expanding universe is demonstrated for the first time by means of numerical simulations. In contrast with what is usually assumed, this result does not rely on any gravitational back reaction effect and has been observed for loops as small as a few thousandths the size of the horizon. We give the energy and number densities of expected cosmic string loops in both the radiation and matter eras. Moreover, we quantify previous claims on the influence of the network initial conditions and the formation of numerically unresolved loops by showing that they only concern a transient relaxation regime. Some cosmological consequences are discussed.Comment: 12 pages, 4 figures, uses iopart. Improved statistics, numerical robustness discussed in details, references added, note added. Matches published versio

    Many worlds in one

    Get PDF
    A generic prediction of inflation is that the thermalized region we inhabit is spatially infinite. Thus, it contains an infinite number of regions of the same size as our observable universe, which we shall denote as \O-regions. We argue that the number of possible histories which may take place inside of an \O-region, from the time of recombination up to the present time, is finite. Hence, there are an infinite number of \O-regions with identical histories up to the present, but which need not be identical in the future. Moreover, all histories which are not forbidden by conservation laws will occur in a finite fraction of all \O-regions. The ensemble of \O-regions is reminiscent of the ensemble of universes in the many-world picture of quantum mechanics. An important difference, however, is that other \O-regions are unquestionably real.Comment: 9 pages, 2 figures, comments and references adde

    Primordial statistical anisotropy generated at the end of inflation

    Full text link
    We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum.Comment: 9 pages, This version supersedes the JCAP version. Minor revision

    Multiple universes, cosmic coincidences, and other dark matters

    Full text link
    Even when completely and consistently formulated, a fundamental theory of physics and cosmological boundary conditions may not give unambiguous and unique predictions for the universe we observe; indeed inflation, string/M theory, and quantum cosmology all arguably suggest that we can observe only one member of an ensemble with diverse properties. How, then, can such theories be tested? It has been variously asserted that in a future measurement we should observe the a priori most probable set of predicted properties (the ``bottom-up'' approach), or the most probable set compatible with all current observations (the ``top-down'' approach), or the most probable set consistent with the existence of observers (the ``anthropic'' approach). These inhabit a spectrum of levels of conditionalization and can lead to qualitatively different predictions. For example, in a context in which the densities of various species of dark matter vary among members of an ensemble of otherwise similar regions, from the top-down or anthropic viewpoints -- but not the bottom-up -- it would be natural for us to observe multiple types of dark matter with similar contributions to the observed dark matter density. In the anthropic approach it is also possible in principle to strengthen this argument and the limit the number of likely dark matter sub-components. In both cases the argument may be extendible to dark energy or primordial density perturbations. This implies that the anthropic approach to cosmology, introduced in part to explain "coincidences" between unrelated constituents of our universe, predicts that more, as-yet-unobserved coincidences should come to light.Comment: 18 JCAP-style pages, accepted by JCAP. Revised version adds references and some clarification

    Making predictions in the multiverse

    Full text link
    I describe reasons to think we are living in an eternally inflating multiverse where the observable "constants" of nature vary from place to place. The major obstacle to making predictions in this context is that we must regulate the infinities of eternal inflation. I review a number of proposed regulators, or measures. Recent work has ruled out a number of measures by showing that they conflict with observation, and focused attention on a few proposals. Further, several different measures have been shown to be equivalent. I describe some of the many nontrivial tests these measures will face as we learn more from theory, experiment, and observation.Comment: 20 pages, 3 figures; invited review for Classical and Quantum Gravity; v2: references improve

    A prescription for probabilities in eternal inflation

    Get PDF
    Some of the parameters we call ``constants of Nature'' may in fact be variables related to the local values of some dynamical fields. During inflation, these variables are randomized by quantum fluctuations. In cases when the variable in question (call it χ\chi) takes values in a continuous range, all thermalized regions in the universe are statistically equivalent, and a gauge invariant procedure for calculating the probability distribution for χ\chi is known. This is the so-called ``spherical cutoff method''. In order to find the probability distribution for χ\chi it suffices to consider a large spherical patch in a single thermalized region. Here, we generalize this method to the case when the range of χ\chi is discontinuous and there are several different types of thermalized region. We first formulate a set of requirements that any such generalization should satisfy, and then introduce a prescription that meets all the requirements. We finally apply this prescription to calculate the relative probability for different bubble universes in the open inflation scenario.Comment: 15 pages, 5 figure

    Towards a gauge invariant volume-weighted probability measure for eternal inflation

    Full text link
    An improved volume-weighted probability measure for eternal inflation is proposed. For the models studied in this paper it leads to simple and intuitively expected gauge-invariant results.Comment: 16 pages, 3 figs, few misprints corrected, comments adde
    corecore